کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
296999 | 511746 | 2012 | 10 صفحه PDF | دانلود رایگان |

Studies related to development of fast reactor fuels based on ternary U–Pu–Zr and binary U–Pu alloys has been initiated in India for building a data base on thermo-physical and thermodynamic properties, fuel-clad compatibility etc. which are very useful to the fuel-designer to optimize the design feature and to predict the in-reactor fuel behaviour. Fuel-clad chemical compatibility is considered as one of the major concerns for metallic fuels. In the present investigation, the performance of Zr as fuel-clad chemical interaction (FCCI) barrier layer between U and T91 was evaluated by diffusion couple experiments. The growth kinetics of reaction layers at U/Zr and Zr/T91 interfaces were established. The growth kinetics of the reaction zone at both the U/Zr and Zr/T91 interfaces were determined at 973 K from the plot of log (width) versus log (time). The value of reaction index n was found to be around 2 at both the U/Zr and Zr/T91 interfaces. The reaction constant (k) for the growth of reaction layer at the U/Zr interface was determined to be 2.07 × 10−8 m s−1/2 at 973 K. Similarly, the rate constant at the Zr/T91 interface was found to be 1.95 × 10−8 m s−1/2 at 973 K. The activation energy Q for the reaction at the Zr/T91 interface was determined and was found to be 54.7 kJ mole−1. The fuel-clad chemical compatibility between U–6Zr alloy and T91 steel was also investigated in the present study by diffusion couple experiments. The interdiffusion between U–6Zr and T91 at 973 K resulted in the formation of three different layers at the interface. The mechanism of formation of these layers was analysed in detail.
► Performance of Zr as FCCI barrier layer was evaluated by diffusion experiments.
► Rate constant for reaction at U/Zr interface was 2.07 × 10−8 m s−1/2 at 973 K.
► Rate constant for reaction at Zr/T91 interface was 1.95 × 10−8 m s−1/2 at 973 K.
► Activation energy for reaction at Zr/T91 interface was found to be 54.7 kJ mole−1.
► Interdiffusion between U–6Zr and T91 resulted in formation of three layers.
Journal: Nuclear Engineering and Design - Volume 250, September 2012, Pages 267–276