کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
298326 511784 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of residual stress in the welding zone of dissimilar metals using data-based models and uncertainty analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Prediction of residual stress in the welding zone of dissimilar metals using data-based models and uncertainty analysis
چکیده انگلیسی

Since welding residual stress is one of the major factors in the generation of primary water stress-corrosion cracking (PWSCC), it is essential to examine the welding residual stress to prevent PWSCC. Therefore, several artificial intelligence methods have been developed and studied to predict these residual stresses. In this study, three data-based models, support vector regression (SVR), fuzzy neural network (FNN), and their combined (FNN + SVR) models were used to predict the residual stress for dissimilar metal welding under a variety of welding conditions. By using a subtractive clustering (SC) method, informative data that demonstrate the characteristic behavior of the system were selected to train the models from the numerical data obtained from finite element analysis under a range of welding conditions. The FNN model was optimized using a genetic algorithm. The statistical and analytical uncertainty analysis methods of the models were applied, and their uncertainties were evaluated using 60 sampled training and optimization data sets, as well as a fixed test data set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 240, Issue 10, October 2010, Pages 2555–2564
نویسندگان
, , , ,