کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
298485 511788 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
CHF experiment and CFD analysis in a 2 × 3 rod bundle with mixing vane
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
CHF experiment and CFD analysis in a 2 × 3 rod bundle with mixing vane
چکیده انگلیسی

In this study, the CHF enhancement using various mixing vanes is evaluated and the flow characteristics are investigated through the CHF experiments and CFD analysis.CHF tests were performed using 2 × 2 and 2 × 3 rod bundles and with R-134a as the working fluid. The test section geometry was identical to that of commercial PWR fuel assembly not including the heated length (1.125 m) and number of fuel rods. From the CHF tests, it was found that the CHF enhancement using mixing vanes under higher mass flux (1400 kg/m2 s) and lower pressure (15 bar) conditions is larger than the CHF enhancements under other conditions. Among the mixing vanes used in this study, the swirl vane showed the best performance under relatively low pressure (15 bar) and mass flux (300–1000 kg/m2 s) conditions and the hybrid vane performed best near the PWR operating conditions.The detailed flow characteristics were also investigated by CFD analysis using the same conditions as the CHF tests. To calculate the subcooled boiling flow, the wall partitioning model was applied to the wall boundary and various two-phase parameters were also considered. The reliability of the CFD analysis in the boiling analysis was confirmed by comparing the average void fractions of the analysis and the experiments: the results agreed well. From the CFD analysis, the void fraction flattening as a result of the lateral velocity induced by the mixing vane was observed. By the lateral motion of the liquid, the void fraction in the near wall was decreased and that of the core region was increased resulting in the void fraction flattening. The decrease of the void fraction in the near wall region promoted liquid supply to the wall and consequently the CHF increased. For the quantification of the void flatness, an index was developed and the applicability of the index in the CHF assessment was confirmed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 239, Issue 5, May 2009, Pages 899–912
نویسندگان
, ,