کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
298795 511799 2008 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gas–liquid flow around an obstacle in a vertical pipe
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Gas–liquid flow around an obstacle in a vertical pipe
چکیده انگلیسی

This paper presents a novel technique to study the two-phase flow field around an asymmetric obstruction in a vertical pipe with a nominal diameter of DN200. Main feature of the experiments is the shifting of a half-moon shaped diaphragm causing the obstruction along the axis of the pipe. In this way, the 3D void field is scanned with a stationary wire-mesh sensor that supplies data with a spatial resolution of 3 mm over the cross-section and a measuring frequency of 2.5 kHz. Besides the measurement of time-averaged void fraction fields and bubble-size distributions, novel data evaluation methods were developed to extract estimated liquid velocity profiles as well as lateral components of bubble velocities from the wire-mesh sensor data. The combination of void fraction fields and velocity profiles offer the opportunity to analyse a two-phase flow in a geometry that owns a series of features characteristic for complex components of power and chemical plant equipment. Such characteristics are sharp edges with flow separation, recirculation areas, jet formation, stagnation points and curved stream-lines.The tests were performed with an air–water flow at nearly ambient conditions and with a saturated steam–water mixture at 6.5 MPa. The superficial velocities of liquid and gas or, respectively, vapour were varied in a wide range.The flow structure upstream and downstream of the obstacle is characterized in detail. Bubble size dependent effects of bubble accumulation and migration are discussed on basis of void-fraction profiles decomposed into bubble-size classes. A pronounced influence of the fluid parameters was found in the behaviour of bubbles at the boundary of the jet coming from the non-obstructed part of the cross-section. In case of an air–water flow, bubbles are restrained from entering the jet, a phenomenon which was not observed in high-pressure steam–water flow. A detailed uncertainty analyse of the velocity assessments finishes the presented paper. A blind pre-test calculation with CFX-10 based on the assumption of a mono-disperse bubbly flow has reproduced the overall void and velocity profiles. The results are used for the assessment of the influence of local accelerations on the liquid velocity measurement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 238, Issue 7, July 2008, Pages 1802–1819
نویسندگان
, , , , , , ,