کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
298908 | 511804 | 2008 | 13 صفحه PDF | دانلود رایگان |

Some contributions have been stated in order to improve the modeling of concurrent downflow condensation in presence of non-condensables inside vertical tubes. In particular, the influence of non-condensables over the liquid side heat transfer has been considered. The new proposed mechanistic models solve explicitly the real interface temperature by means of a cubic or a fourth order equation. As these models have a non-iterative nature, they can avoid the weakest point of the traditional mechanistic models, which is the slowdown computation if the model had to be implemented in a code. Moreover, as the main non-condensables effects can be accounted for in the heat and mass transfer processes, the new models will be more realistic. The models have been validated with the Vierow experimental data, obtaining a total average relative error, for the fourth order equation method model, of 21% for 268 points.
Journal: Nuclear Engineering and Design - Volume 238, Issue 1, January 2008, Pages 143–155