کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
298984 511809 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A scheme for finite element analysis of mode I and mixed mode stable crack growth and a case study with AISI 4340 steel
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
A scheme for finite element analysis of mode I and mixed mode stable crack growth and a case study with AISI 4340 steel
چکیده انگلیسی

A new scheme for elastic–plastic finite element analysis has been proposed for the study of stable crack growth (SCG) from initiation to instability in both mode I and mixed modes (I and II). The scheme is based on node-release technique and helps to determine the variation of fracture load with crack extension without requiring much computer storage and time. The scheme permits predictions of load variation with load line displacement (LLD), maximum fracture load, crack tip current plastic zone and crack edge profile. In the analysis the condition for crack extension at every stage of the SCG is considered to be governed by CTOA/COD reaching a critical value. The scheme of analysis is different from the ones proposed by earlier investigators. The whole SCG is analysed in a few stages using the ANSYS software and a single discretization. Element arrangement in the discretization is decided from the very beginning; it has a capability of accommodating changes in boundary conditions arising out of crack extension in the later stages. Each stage is analysed afresh ignoring state of stress–strain reached at a material point at the end of the previous stage. Case studies on both mode I and mixed mode presented considering AISI 4340 steel, which is widely used in nuclear power industry, indicate that the SCG through it can be characterized in terms of a single COD or CTOA. Predictions for the initiation and maximum fracture loads in both the cases compare very closely with the experimental data reported. The results presented also include the value of critical COD/CTOA (0.035 mm/0.0875 rad) characterizing the SCG through the steel and show that the initiation load is not significantly affected by crack tip radius up to 0.05 mm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 238, Issue 4, April 2008, Pages 787–800
نویسندگان
, , ,