کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
299211 511820 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simulant melt experiments on performance of the in-vessel core catcher
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Simulant melt experiments on performance of the in-vessel core catcher
چکیده انگلیسی

In order to enhance the feasibility of in-vessel retention (IVR) of molten core material during a severe accident for high-power reactors, an in-vessel core catcher (IVCC) was designed and evaluated as part of a joint United States-Korean International Nuclear Energy Research Initiative (INERI). The proposed IVCC is expected to increase the thermal margin for success of IVR by providing an “engineered gap” for heat transfer from materials that relocate during a severe accident and potentially serving as a sacrificial material under a severe accident. In this study, LAVA-GAP experiments were performed to investigate the thermal and mechanical performance of the IVCC using the alumina melt as simulant. The LAVA-GAP experiments aim to examine the feasibility and sustainability of the IVCC under the various test conditions using 1/8th scale hemispherical test sections. As a feasibility test of the proposed IVCC in this INERI project, the effects of IVCC base steel materials, internal coating materials, and gap size between the IVCC and the vessel lower head were examined. The test results indicated that the internally coated IVCC has high thermal performance compared with the uncoated IVCC. In terms of integrity of the base steel, carbon steel is superior to stainless steel and the effect of bond coat is found to be trivial for the tests performed in this study. The thermal load is mitigated via boiling heat removal in the gap between the IVCC and the vessel lower head. The current test results imply that gaps less than 10 mm are not enough to guarantee effective cooling induced by water ingression and steam venting there through. Selection of endurable material and pertinent gap size is needed to implement the proposed IVCC concept into advanced reactor designs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 237, Issues 15–17, September 2007, Pages 1803–1813
نویسندگان
, , , , , ,