کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
300082 512469 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis
ترجمه فارسی عنوان
انرژی قابل تجربی را از مخلوط کردن آب رودخانه، آب دریا یا نمکی با الکترو دی دیالیز معکوس
کلمات کلیدی
الکترو دی دیالیز معکوس، تراکم قدرت، بهره وری انرژی، آبنمک، مقاومت، درجه حرارت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی


• Investigation of effect of feed water concentration on power output in RED.
• Membrane resistance and permselectivity limit power output at high salinities.
• Highest fuel efficiency for feeds with low concentrations and low salinity gradients.
• Power density increases with higher salinity gradients, despite lower permselectivity.
• The work identifies directions for further increase in power density.

Energy is released when feed waters with different salinity mix. This energy can be captured in reverse electrodialysis (RED). This paper examines experimentally the effect of varying feed water concentrations on a RED system in terms of permselectivity of the membrane, energy efficiency, power density and electrical resistance. Salt concentrations ranging from 0.01 M to 5 M were used simultaneously in two stacks with identical specifications, providing an overview of potential applications. Results show a decrease of both permselectivity and energy efficiency with higher salt concentrations and higher gradients. Conversely, power density increases when higher gradients are used. The resistance contribution of concentration change in the bulk solution, spacers and the boundary layer is more significant for lower concentrations and gradients, while membrane resistance is dominant for high concentrations. Increasing temperature has a negative effect on permselectivity and energy efficiency, but is beneficial for power density. A power density of 6.7 W/m2 is achieved using 0.01 M against 5 M at 60 °C. The results suggest that there is no single way to improve the performance of a RED system for all concentrations. Improvements are therefore subject to the specific priorities of the application and the salt concentration levels used. Regarding ion exchange membranes, higher salinity gradients would benefit most from a higher fixed charge density to reduce co-ion transport, while lower salinity gradients benefit from a thicker membrane to decrease the osmotic flux.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 64, April 2014, Pages 123–131
نویسندگان
, , , ,