کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
301067 512496 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Performance evaluation and accuracy enhancement of a day-ahead wind power forecasting system in China
چکیده انگلیسی

Wind power forecasting system is useful to increase the wind energy penetration level. Latest statistics show that China has been the biggest wind energy market throughout the world. However, few studies have been published to introduce the wind energy forecasting technologies in China. This paper presents the performance evaluation and accuracy enhancement of a novel day-ahead wind power forecasting system in China. This system consists of a numerical weather prediction (NWP) model and artificial neural networks (ANNs). The NWP model is established by coupling the Global Forecasting system (GFS) with the Weather Research and Forecasting (WRF) system together to predict meteorological parameters. In addition, Kalman filter has been integrated in this system to reduce the systematic errors in wind speed from WRF and enhance the forecasting accuracy. The numerical results from a real world case are proven the effectiveness of this forecasting system in terms of the raw wind speed correction and wind power forecasting accuracy. The Normalized Root Mean Square Error (NRMSE) has a month average value of 16.47%, which is an acceptable error margin for allowing the use of the forecasted values in electric market operations. This forecasting system is profitable for increasing the wind energy penetration level in China.


► A novel day-ahead wind power forecasting system in China is proposed.
► The combination of WRF and neural network for wind power forecasting.
► Using Kalman filter to post-process the outputs of WRF model for enhancing accuracy.
► Numerical results for a single wind farm show a good performance of the system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 43, July 2012, Pages 234–241
نویسندگان
, , , , , ,