کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3030386 | 1183202 | 2006 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Structures of importance for the stability of antiplasmin as studied by site-directed mutagenesis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Human antiplasmin, a fast-acting inhibitor of plasmin in plasma, belongs to the serpin super-family of proteins. Like other members of this family, antiplasmin has a scissile peptide bond exposed within a reactive centre loop, typically present at the surface of the molecule. Antiplasmin is stable at neutral pH, but at acidic pH or at elevated temperatures it rapidly becomes inactivated. Data regarding “native” antiplasmin have demonstrated that both polymerization processes and formation of latent molecules are important in this respect. In this work we used site-directed mutagenesis to produce 11 single-site mutants (mainly within Aβ-sheet, Bβ-sheet and reactive centre loop), which were expressed in Drosophila S2 cells, purified and characterized. Five of the 11 mutants were found to have a deviating stability at decreased pH. Glu346Thr was the only mutant with a lesser stability as compared to wt-antiplasmin, but the other 4 were more stable. The most stable mutant, His341Thr, was 7-fold more stable at pH 4.9 as compared to wt-antiplasmin. The wt-antiplasmin had a much more pronounced tendency to polymerize at decreased pH, as compared to “native” antiplasmin. However, many of the mutants clearly rather formed latent molecules, as judged both from PAGE-analysis at non-denaturing condition and reactivation experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thrombosis Research - Volume 117, Issue 3, 2006, Pages 315-322
Journal: Thrombosis Research - Volume 117, Issue 3, 2006, Pages 315-322
نویسندگان
Haiyao Wang, Sarolta Pap, Björn Wiman,