کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3032028 | 1183994 | 2015 | 10 صفحه PDF | دانلود رایگان |
BackgroundThis study investigates the prediction of mild cognitive impairment-to-Alzheimer's disease (MCI-to-AD) conversion based on extensive multimodal data with varying degrees of missing values.MethodsBased on Alzheimer's Disease Neuroimaging Initiative data from MCI-patients including all available modalities, we predicted the conversion to AD within 3 years. Different ways of replacing missing data in combination with different classification algorithms are compared. The performance was evaluated on features prioritized by experts and automatically selected features.ResultsThe conversion to AD could be predicted with a maximal accuracy of 73% using support vector machines and features chosen by experts. Among data modalities, neuropsychological, magnetic resonance imaging, and positron emission tomography data were most informative. The best single feature was the functional activities questionnaire.ConclusionExtensive multimodal and incomplete data can be adequately handled by a combination of missing data substitution, feature selection, and classification.
Journal: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring - Volume 1, Issue 2, June 2015, Pages 206–215