کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3046022 1185034 2009 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of patterns of EEG synchronization for seizure prediction
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Classification of patterns of EEG synchronization for seizure prediction
چکیده انگلیسی

ObjectiveResearch in seizure prediction from intracranial EEG has highlighted the usefulness of bivariate measures of brainwave synchronization. Spatio-temporal bivariate features are very high-dimensional and cannot be analyzed with conventional statistical methods. Hence, we propose state-of-the-art machine learning methods that handle high-dimensional inputs.MethodsWe computed bivariate features of EEG synchronization (cross-correlation, nonlinear interdependence, dynamical entrainment or wavelet synchrony) on the 21-patient Freiburg dataset. Features from all channel pairs and frequencies were aggregated over consecutive time points, to form patterns. Patient-specific machine learning-based classifiers (support vector machines, logistic regression or convolutional neural networks) were trained to discriminate interictal from preictal patterns of features. In this explorative study, we evaluated out-of-sample seizure prediction performance, and compared each combination of feature type and classifier.ResultsAmong the evaluated methods, convolutional networks combined with wavelet coherence successfully predicted all out-of-sample seizures, without false alarms, on 15 patients, yielding 71% sensitivity and 0 false positives.ConclusionsOur best machine learning technique applied to spatio-temporal patterns of EEG synchronization outperformed previous seizure prediction methods on the Freiburg dataset.SignificanceBy learning spatio-temporal dynamics of EEG synchronization, pattern recognition could capture patient-specific seizure precursors. Further investigation on additional datasets should include the seizure prediction horizon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Clinical Neurophysiology - Volume 120, Issue 11, November 2009, Pages 1927–1940
نویسندگان
, , , ,