کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3072001 1188723 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Single-scan R2⁎ measurement with macroscopic field inhomogeneity correction
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Single-scan R2⁎ measurement with macroscopic field inhomogeneity correction
چکیده انگلیسی

Accurate quantification of R2⁎ (= 1/T2⁎) is important for many applications in neuroimaging. However, R2⁎ measurements made using conventional multi-echo gradient echo imaging are hampered by macroscopic field inhomogeneities. Several methods for compensation of macroscopic field inhomogeneities have been introduced, most of them requiring increased scan time. In this paper, an R2⁎ estimation process using a modified multi-echo gradient echo sequence that includes bipolar compensation gradients and does not require additional data acquisition time is proposed. A post-processing algorithm based on an excitation-profile weighted signal model is used. The optimal amount of compensation gradients and performance was investigated by numerical simulation and phantom tests. Multi-slice R2⁎ maps were obtained from 11 human volunteers at 3 T. Simulation results demonstrated that this method successfully removes the effects of macroscopic field inhomogeneities of up to ± 300 μT/m within an error range of ± 8%. ROI analysis revealed R2⁎ values of 30.4 ± 3.0 s− 1 (substantia nigra), 25.8 ± 2.7 s− 1 (red nuclei), 23.2 ± 1.0 s− 1 (genu), 20.8 ± 1.2 s− 1 (putamen), 34.2 ± 3.4 s− 1 (globus pallidus), and 21.8 ± 1.4 s− 1 (splenium) using the proposed method, with statistically significant differences compared to conventional method in the regions of the substantia nigra, red nucleus, genu, putamen, and globus pallidus (p < 0.05). Our proposed scheme allows for fast single-scan multi-slice R2⁎ measurement and includes compensation for the effects of macroscopic field inhomogeneity.


► The proposed method successfully estimates R2⁎ value up to ± 300 μT/m of Gz,susc.
► Linearly increasing gradients are used for compensating the effects of Gz,susc.
► R2⁎ values are estimated using an excitation-profile weighted signal model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 63, Issue 4, December 2012, Pages 1790–1799
نویسندگان
, , ,