کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3072058 1580941 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain
چکیده انگلیسی

Accurate quantification of PET imaging data is required for a useful interpretation of the measured radioactive tracer concentrations. The partial volume effect (PVE) describes signal dilution and mixing due to spatial resolution and sampling limitations, which introduces bias in quantitative results. In the present study we investigated the magnitude of PVE for volumes of interest (VOIs) in the rat brain and the effect of positron range. In simulated 11C-raclopride studies we examined the influence of PVE on time activity curves in striatal and cerebellar VOIs and binding potential estimation. The performance of partial volume correction (PVC) was studied using the region-based geometric transfer matrix (GTM) method including the question of whether a spatially variant point spread function (PSF) is necessary for PVC of a rat brain close to the centre of the field of view. Furthermore, we determined the effect of spillover from activity outside the brain.The results confirmed that PVE is significant in rat brain PET and showed that positron range is an important factor that needs to be included in the PSF. There was considerable bias in time activity curves for the simulated 11C-raclopride studies and significant underestimation of binding potential even for very small centred VOIs. Good activity recovery was achieved with the GTM PVC using a spatially invariant simulated PSF when no activity was present outside the brain. PVC using a simple Gaussian fit point spread function was not sufficiently accurate. Spillover from regions outside the brain had a significant impact on measured activity concentrations and reduced the accuracy of PVC with the GTM method using rat brain regions alone, except for the smallest VOI size but at the cost of increased noise. Voxel-based partial volume correction methods which inherently compensate for spillover from outside the brain might be a more suitable choice.


► We study factors affecting partial volume effect and correction in rat brain PET.
► Partial volume effect is significant and positron range is an important factor.
► Binding potential for simulated 11C-raclopride studies is underestimated.
► Correction performs accurately when no activity is present outside the brain.
► Spillover from outside the brain reduces the accuracy of the correction method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 60, Issue 4, 1 May 2012, Pages 2144–2157
نویسندگان
, , , ,