کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3072080 1580941 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts
چکیده انگلیسی

Cerebral abnormalities such as white matter hyperintensity (WMH), cortical infarct (CI), and lacunar infarct (LI) are of clinical importance and frequently present in patients with stroke and dementia. Up to date, there are limited algorithms available to automatically delineate these cerebral abnormalities partially due to their complex appearance in MR images. In this paper, we describe an automated multi-stage segmentation approach for labeling the WMH, CI, and LI using multi-modal MR images. We first automatically segment brain tissues (white matter, gray matter, and CSF) based on the T1-weighted image and then identify hyperintense voxels based on the fluid attenuated inversion recovery (FLAIR) image. We finally label the WMH, CI, and LI based on the T1-weighted, T2-weighted, and FLAIR images. The segmentation accuracy is evaluated using a community-based sample of 272 old adults. Our results show that the automated segmentation of the WMH, CI, and LI is comparable with manual labeling in terms of spatial location, volume, and the number of lacunes. Additionally, the WMH volume is highly correlated with the visual grading score based on the Age-Related White Matter Changes (ARWMC) protocol. The evaluations against the manual labeling and ARWMC visual grading suggest that our algorithm provides reasonable segmentation accuracy for the WMH, CI, and LI.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 60, Issue 4, 1 May 2012, Pages 2379–2388
نویسندگان
, , , , , , , , ,