کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3072704 1188800 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Machine learning classifiers and fMRI: A tutorial overview
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Machine learning classifiers and fMRI: A tutorial overview
چکیده انگلیسی

Interpreting brain image experiments requires analysis of complex, multivariate data. In recent years, one analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers to decode stimuli, mental states, behaviours and other variables of interest from fMRI data and thereby show the data contain information about them. In this tutorial overview we review some of the key choices faced in using this approach as well as how to derive statistically significant results, illustrating each point from a case study. Furthermore, we show how, in addition to answering the question of ‘is there information about a variable of interest’ (pattern discrimination), classifiers can be used to tackle other classes of question, namely ‘where is the information’ (pattern localization) and ‘how is that information encoded’ (pattern characterization).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 45, Issue 1, Supplement 1, March 2009, Pages S199–S209
نویسندگان
, , ,