کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3074209 1188864 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity
چکیده انگلیسی

This paper formulates a novel probabilistic graphical model for noisy stimulus-evoked MEG and EEG sensor data obtained in the presence of large background brain activity. The model describes the observed data in terms of unobserved evoked and background factors with additive sensor noise. We present an expectation maximization (EM) algorithm that estimates the model parameters from data. Using the model, the algorithm cleans the stimulus-evoked data by removing interference from background factors and noise artifacts and separates those data into contributions from independent factors. We demonstrate on real and simulated data that the algorithm outperforms benchmark methods for denoising and separation. We also show that the algorithm improves the performance of localization with beamforming algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 30, Issue 2, 1 April 2006, Pages 400–416
نویسندگان
, , , ,