کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3074820 1580955 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accuracy of automated classification of major depressive disorder as a function of symptom severity
ترجمه فارسی عنوان
دقت طبقه بندی خودکار اختلال افسردگی عمده بعنوان عملکرد شدت علامت
کلمات کلیدی
افسردگی شدید، شدت علائم، تشخیص، تصویربرداری رزونانس مغناطیسی عملکردی، فراگیری ماشین، طبقه بندی، ماشین بردار پشتیبانی
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی روانپزشکی بیولوژیکی
چکیده انگلیسی


• SVM binary classifiers achieved significant classification of very severe depression with resting state fMRI data.
• Prefrontal, anterior cingulate and insula were the most discriminative brain regions.
• No significant classification could be achieved for less severe MDD with resting state data.
• With emotional task data, SVM classifier performed at chance for all MDD severity groups.

BackgroundGrowing evidence documents the potential of machine learning for developing brain based diagnostic methods for major depressive disorder (MDD). As symptom severity may influence brain activity, we investigated whether the severity of MDD affected the accuracies of machine learned MDD-vs-Control diagnostic classifiers.MethodsForty-five medication-free patients with DSM-IV defined MDD and 19 healthy controls participated in the study. Based on depression severity as determined by the Hamilton Rating Scale for Depression (HRSD), MDD patients were sorted into three groups: mild to moderate depression (HRSD 14–19), severe depression (HRSD 20–23), and very severe depression (HRSD ≥ 24). We collected functional magnetic resonance imaging (fMRI) data during both resting-state and an emotional-face matching task. Patients in each of the three severity groups were compared against controls in separate analyses, using either the resting-state or task-based fMRI data. We use each of these six datasets with linear support vector machine (SVM) binary classifiers for identifying individuals as patients or controls.ResultsThe resting-state fMRI data showed statistically significant classification accuracy only for the very severe depression group (accuracy 66%, p = 0.012 corrected), while mild to moderate (accuracy 58%, p = 1.0 corrected) and severe depression (accuracy 52%, p = 1.0 corrected) were only at chance. With task-based fMRI data, the automated classifier performed at chance in all three severity groups.ConclusionsBinary linear SVM classifiers achieved significant classification of very severe depression with resting-state fMRI, but the contribution of brain measurements may have limited potential in differentiating patients with less severe depression from healthy controls.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage: Clinical - Volume 12, 2016, Pages 320–331
نویسندگان
, , , , , , , ,