کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3116648 1582727 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of surface treatment on cell responses to grades 4 and 5 titanium for orthodontic mini-implants
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی دندانپزشکی، جراحی دهان و پزشکی
پیش نمایش صفحه اول مقاله
Effect of surface treatment on cell responses to grades 4 and 5 titanium for orthodontic mini-implants
چکیده انگلیسی

IntroductionMini-implants are used to improve orthodontic anchorage, but optimal composition and surface characteristics have yet to be determined. We investigated the behavior of osteoblast-like cells on grade 4 commercially pure titanium and grade 5 titanium alloy with different surface treatments for mini-implants.MethodsMC3T3 cells were plated on machined, acid-etched, or acid-etched grade 4 titanium enriched with calcium phosphate, or machined, anodized, or anodized and calcium phosphate-enriched grade 5 titanium disks. Surface and cell morphologies were assessed by scanning electron microscopy. Cell viability was measured by chemiluminescence, cytoskeletal organization was investigated by immunofluorescence, and real-time polymerase chain reaction for osteoblast-specific genes was performed to measure cell differentiation.ResultsFlattened shapes and strong stress fibers were observed on the machined surfaces; cells on the rough surfaces had a spindle shape, with lower cytoskeletal polarization. Cell proliferation was highest on smooth grade 4 titanium surfaces, whereas cells quickly reached a plateau on rough grade 4 titanium; no difference was observed after 72 hours in the grade 5 titanium groups. Calcium phosphate enrichment on grade 4 titanium significantly increased the messenger RNA levels for alkaline phosphatase and osteocalcin. Osteoblastic markers were higher on the grade 5 titanium machined surfaces than on the rough surfaces, and comparable with acid-etched grade 4 titanium.ConclusionsAlthough the grade 4 titanium enriched with calcium phosphate had the highest level of differentiation in vitro, the grade 5 titanium machined surfaces supported cell proliferation and matrix synthesis, and induced high expression of early differentiation markers. Increased mechanical resistance of grade 5 titanium makes it a potential candidate for orthodontic mini-implants.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: American Journal of Orthodontics and Dentofacial Orthopedics - Volume 141, Issue 6, June 2012, Pages 705–714
نویسندگان
, , , , , , ,