کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3360242 1591863 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی میکروبیولوژی و بیوتکنولوژی کاربردی
پیش نمایش صفحه اول مقاله
Prediction of antibiotic resistance proteins from sequence-derived properties irrespective of sequence similarity
چکیده انگلیسی

Increasing antibiotic resistance has become a worldwide challenge to the clinical treatment of infectious diseases. The identification of antibiotic resistance proteins (ARPs) would be helpful in the discovery of new therapeutic targets and the design of novel drugs to control the potential spread of antibiotic resistance. In this work, a support vector machine (SVM)-based ARP prediction system was developed using 1308 ARPs and 15 587 non-ARPs. Its performance was evaluated using 313 ARPs and 7156 non-ARPs. The computed prediction accuracy was 88.5% for ARPs and 99.2% for non-ARPs. A potential application of this method is the identification of ARPs non-homologous to proteins of known function. Further genome screening found that ca. 3.5% and 3.2% of proteins in Escherichia coli and Staphylococcus aureus, respectively, are potential ARPs. These results suggest the usefulness of SVMs for facilitating the identification of ARPs. The software can be accessed at SARPI (Server for Antibiotic Resistance Protein Identification).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Antimicrobial Agents - Volume 32, Issue 3, September 2008, Pages 221–226
نویسندگان
, , , , , , ,