کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3379622 | 1220171 | 2013 | 7 صفحه PDF | دانلود رایگان |

SummaryObjectiveLongitudinal quantitative evaluation of cartilage disease requires reproducible measurements over time. We report 8 years of quality assurance (QA) metrics for quantitative magnetic resonance (MR) knee analyses from the Osteoarthritis Initiative (OAI) and show the impact of MR system, phantom, and acquisition protocol changes.MethodKey 3 T MR QA metrics, including signal-to-noise, signal uniformity, T2 relaxation times, and geometric distortion, were quantified monthly on two different phantoms using an automated program.ResultsOver 8 years, phantom measurements showed root-mean-square coefficient-of-variation reproducibility of <0.25% (190.0 mm diameter) and <0.20% (148.0 mm length), resulting in spherical volume reproducibility of <0.35%. T2 relaxation time reproducibility varied from 1.5% to 5.3%; seasonal fluctuations were observed at two sites. All other QA goals were met except: slice thicknesses were consistently larger than nominal on turbo spin echo images; knee coil signal uniformity and signal level varied significantly over time.ConclusionsThe longitudinal variations for a spherical volume should have minimal impact on the accuracy and reproducibility of cartilage volume and thickness measurements as they are an order of magnitude smaller than reported for either unpaired or paired (repositioning and reanalysis) precision errors. This stability should enable direct comparison of baseline and follow-up images. Cross-comparison of the geometric results from all four OAI sites reveal that the MR systems do not statistically differ and enable results to be pooled. MR QA results identified similar technical issues as previously published. Geometric accuracy stability should have the greatest impact on quantitative analysis of longitudinal change in cartilage volume and thickness precision.
Journal: Osteoarthritis and Cartilage - Volume 21, Issue 1, January 2013, Pages 110–116