کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3447095 | 1595485 | 2012 | 7 صفحه PDF | دانلود رایگان |

Background and AimsIntracellular calcium regulation in endothelial cells depends on transient receptor potential channels (TRPs). Canonical TRPs (TRPCs) are now recognized as the most important Ca2+-permeable cation channels in vascular endothelium and TRPC3 channel is reported to play a role in vasodilation in animal vessels. However, little is known about the role of TRPCs in human arteries. We therefore tested the hypothesis that TRPCs play a role in human arteries.MethodsCumulative concentration-relaxation curves to acetylcholine (−11 to −4.5 log M) were established in the human internal mammary artery (IMA) rings (n = 42) taken from 28 patients undergoing coronary artery bypass grafting in precontraction induced by U46619 (−8 log M) in the absence or presence of SKF96365 (10 μmol/L) or Pyr3 (3 μmol/L). Protein expressions of TRPC3 were determined by Western blot and immunohistochemistry staining.ResultsThe maximal relaxation induced by acetylcholine was significantly attenuated by the nonspecific cation channels inhibitor, SKF96365 (48.2 ± 3.7 vs. 66.0 ± 0.9% in control, p <0.01) or the selective TRPC3 blocker, Pyr3 (58.4 ± 2.3% vs. 67.7 ± 1.1% in control, p <0.01). Protein expression of TRPC3 was detected in human IMA.ConclusionsTRPC3 exists and plays a role in the acetylcholine-induced endothelium-dependent relaxation in the human IMA. This study suggests that TRPC3 may be a potential new target in endothelial protection in patients with endothelial dysfunction such as in patients with coronary artery disease in order to improve the long-term patency of the grafting vessels.
Journal: Archives of Medical Research - Volume 43, Issue 6, August 2012, Pages 431–437