کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
377550 658790 2016 8 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods
ترجمه فارسی عنوان
پیش بینی کمپلکس‌های پروتئینی هم تداخل از نمودارهای تعامل پروتئین موزون محلات متراکم به تدریج در حال گسترش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
محاسبات کامپیوتری پیچیدگی های پروتئین؛ خوشه بندی شبکه های تعامل پروتئین و پروتئین؛ خوشه های پروتئین با عملکرد همگن؛ ماژول های شبکه پارکینسون بروز متفاوت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Gradually Expanding Dense Neighborhoods (GENA) is proposed for the computational prediction of protein complexes from weighted protein interaction networks.
• GENA permits the participation of proteins to multiple complexes in agreement with the underlying cell mechanisms.
• GENA outperformed three of the state of the art algorithms for predicting protein complexes in experiments with datasets from yeast and human organisms.
• Downstream analysis of the resulted clusters revealed functional homogeneity between the proteins of the same cluster.
• Significantly altered network modules were detected when GENA was applied to two co-expression networks: one generated from Parkinson patients and one from healthy individuals.

ObjectiveProteins are vital biological molecules driving many fundamental cellular processes. They rarely act alone, but form interacting groups called protein complexes. The study of protein complexes is a key goal in systems biology. Recently, large protein–protein interaction (PPI) datasets have been published and a plethora of computational methods that provide new ideas for the prediction of protein complexes have been implemented. However, most of the methods suffer from two major limitations: First, they do not account for proteins participating in multiple functions and second, they are unable to handle weighted PPI graphs. Moreover, the problem remains open as existing algorithms and tools are insufficient in terms of predictive metrics.MethodIn the present paper, we propose gradually expanding neighborhoods with adjustment (GENA), a new algorithm that gradually expands neighborhoods in a graph starting from highly informative “seed” nodes. GENA considers proteins as multifunctional molecules allowing them to participate in more than one protein complex. In addition, GENA accepts weighted PPI graphs by using a weighted evaluation function for each cluster.ResultsIn experiments with datasets from Saccharomyces cerevisiae and human, GENA outperformed Markov clustering, restricted neighborhood search and clustering with overlapping neighborhood expansion, three state-of-the-art methods for computationally predicting protein complexes. Seven PPI networks and seven evaluation datasets were used in total. GENA outperformed existing methods in 16 out of 18 experiments achieving an average improvement of 5.5% when the maximum matching ratio metric was used. Our method was able to discover functionally homogeneous protein clusters and uncover important network modules in a Parkinson expression dataset. When used on the human networks, around 47% of the detected clusters were enriched in gene ontology (GO) terms with depth higher than five in the GO hierarchy.ConclusionsIn the present manuscript, we introduce a new method for the computational prediction of protein complexes by making the realistic assumption that proteins participate in multiple protein complexes and cellular functions. Our method can detect accurate and functionally homogeneous clusters.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 71, July 2016, Pages 62–69
نویسندگان
, , , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت