کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380419 1437440 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Concurrent Markov decision processes for robot team learning
ترجمه فارسی عنوان
همزمان تصمیم گیری مارکوف برای یادگیری تیم ربات
کلمات کلیدی
یادگیری چند عامل تیم ربات، تیم ناهمگن، تقویت یادگیری، روند تصمیم گیری مارکوف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Multi-agent learning, in a decision theoretic sense, may run into deficiencies if a single Markov decision process (MDP) is used to model agent behaviour. This paper discusses an approach to overcoming such deficiencies by considering a multi-agent learning problem as a concurrence between individual learning and task allocation MDPs. This approach, called Concurrent MDP (CMDP), is contrasted with other MDP models, including decentralized MDP. The individual MDP problem is solved by a Q-Learning algorithm, guaranteed to settle on a locally optimal reward maximization policy. For the task allocation MDP, several different concurrent individual and social learning solutions are considered. Through a heterogeneous team foraging case study, it is shown that the CMDP-based learning mechanisms reduce both simulation time and total agent learning effort.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 39, March 2015, Pages 223–234
نویسندگان
, ,