کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
380429 | 1437445 | 2014 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Ensemble aggregation methods for relocating models of rare events
ترجمه فارسی عنوان
روش جمعآوری گروهی برای جابجایی مدلهای حوادث نادر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی گروهی، تشخیص رویداد نادر، آبزی پروری
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Spatially distributed regions may have different influences that affect the underlying physical processes and make it inappropriate to directly relocate learned models. We may also be aiming to detect rare events for which we have examples in some regions, but not others. Three novel voting methods are presented for combining classifiers trained on regions with available examples for predicting rare events in new regions; specifically the closure of shellfish farms. The ensemble methods introduced are consistently more accurate at predicting closures. Approximately 63% of locations were successfully learned with Class Balance aggregation compared with 37% for the Expert guidelines, and 0% for One Class Classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 34, September 2014, Pages 58–65
Journal: Engineering Applications of Artificial Intelligence - Volume 34, September 2014, Pages 58–65
نویسندگان
Claire D'Este, Greg Timms, Alison Turnbull, Ashfaqur Rahman,