کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380633 1437451 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A variant of the particle swarm optimization for the improvement of fault diagnosis in industrial systems via faults estimation
ترجمه فارسی عنوان
یک نوع از بهینه سازی ذرات برای بهبود تشخیص خطا در سیستم های صنعتی از طریق تخمین گسل
کلمات کلیدی
بهینه سازی کلینیک مورچه، تشخیص گسل، سیستم های صنعتی، بهینه سازی ذرات ذرات، تشخیص قوی تشخیص حساس
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper proposes an approach for Fault Diagnosis and Isolation (FDI) on industrial systems via faults estimation. FDI is presented as an optimization problem and it is solved with Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) algorithms. Also, is presented a study of the influence of some parameters from PSO and ACO in the desirable characteristics of FDI, i.e. robustness and sensitivity. As a consequence, the Particle Swarm Optimization with Memory (PSO-M) algorithm, a new variant of PSO was developed. PSO-M has the objective of reducing the number of iterations/generations that PSO needs to execute in order to provide a reasonable quality diagnosis. The proposed approach is tested using simulated data from a DC Motor benchmark. The results and analysis indicate the suitability of the approach as well as the PSO-M algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 28, February 2014, Pages 36–51
نویسندگان
, , , , ,