کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380638 1437451 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid email spam detection model with negative selection algorithm and differential evolution
ترجمه فارسی عنوان
مدل تشخیص اسپم ایمیل هیبریدی با الگوریتم انتخاب منفی و تکامل دیفرانسیل
کلمات کلیدی
الگوریتم انتخاب منفی، تکامل دیفرانسیل، پست الکترونیک، هرزنامه ها، غیر اسپم نسل آشکارساز
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Email spam is an increasing problem that not only affects normal users of internet but also causes a major problem for companies and organizations. Earlier techniques have been impaired by the adaptive nature of unsolicited email spam. Inspired by adaptive algorithm, this paper introduces a modified machine learning technique of the human immune system called negative selection algorithm (NSA). A local selection differential evolution (DE) generates detectors at the random detector generation phase of NSA; code named NSA–DE. Local outlier factor (LOF) is implemented as fitness function to maximize the distance of generated spam detectors from the non-spam space. The problem of overlapping detectors is also solved by calculating the minimum and maximum distance of two overlapped detectors in the spam space. From the experiments, the results show that the detection accuracy of NSA–DE is 83.06% while the standard negative selection algorithm is 68.86% at 7000 generated detectors.

Shows the overall average of the NSA and NSA-DE.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 28, February 2014, Pages 97–110
نویسندگان
, , ,