کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380670 1437458 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform
چکیده انگلیسی

This paper investigates the use of wavelet ensemble models for high performance concrete (HPC) compressive strength forecasting. More specifically, we incorporate bagging and gradient boosting methods in building artificial neural networks (ANN) ensembles (bagged artificial neural networks (BANN) and gradient boosted artificial neural networks (GBANN)), first. Coefficient of determination (R2), mean absolute error (MAE) and the root mean squared error (RMSE) statics are used for performance evaluation of proposed predictive models. Empirical results show that ensemble models (R2BANN=0.9278, R2GBANN=0.9270) are superior to a conventional ANN model (R2ANN=0.9088). Then, we use the coupling of discrete wavelet transform (DWT) and ANN ensembles for enhancing the prediction accuracy. The study concludes that DWT is an effective tool for increasing the accuracy of the ANN ensembles (R2WBANN=0.9397, R2WGBANN=0.9528).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 26, Issue 4, April 2013, Pages 1246–1254
نویسندگان
, , ,