کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
380850 1437455 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Association rule mining using binary particle swarm optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Association rule mining using binary particle swarm optimization
چکیده انگلیسی

In this paper, we developed a binary particle swarm optimization (BPSO) based association rule miner. Our BPSO based association rule miner generates the association rules from the transactional database by formulating a combinatorial global optimization problem, without specifying the minimum support and minimum confidence unlike the a priori algorithm. Our algorithm generates the best M rules from the given database, where M is a given number. The quality of the rule is measured by a fitness function defined as the product of support and confidence. The effectiveness of our algorithm is tested on a real life bank dataset from commercial bank in India and three transactional datasets viz. books database, food items dataset and dataset of the general store taken from literature. Based on the results, we infer that our algorithm can be used as an alternative to the a priori algorithm and the FP-growth algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 26, Issue 8, September 2013, Pages 1832–1840
نویسندگان
, ,