کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
380999 | 1437457 | 2013 | 16 صفحه PDF | دانلود رایگان |

Many engineering design problems must optimize multiple objectives. While many objectives are explicit and can be mathematically modeled, some goals are subjective and cannot be included in a mathematical model of the optimization problem. A set of alternative non-dominated fronts that represent multiple optima for problem solution can be identified to provide insight about the decision space and to provide options and alternatives for decision-making. This paper presents a new algorithm, the Multi-objective Niching Co-evolutionary Algorithm (MNCA) that identifies distinct sets of non-dominated solutions which are maximally different in their decision vectors and are located in the same non-inferior regions of a Pareto front. MNCA is demonstrated to identify a set of non-dominated fronts with maximum difference in decision vectors for a set of real-valued problems.
Journal: Engineering Applications of Artificial Intelligence - Volume 26, Issues 5–6, May–June 2013, Pages 1442–1457