کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381406 1437474 2011 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
چکیده انگلیسی

Multilevel thresholding is one of the most popular image segmentation techniques. In order to determine the thresholds, most methods use the histogram of the image. This paper proposes multilevel thresholding for histogram-based image segmentation using modified bacterial foraging (MBF) algorithm. To improve the global searching ability and convergence speed of the bacterial foraging algorithm, the best bacteria among all the chemotactic steps are passed to the subsequent generations. The optimal thresholds are found by maximizing Kapur's (entropy criterion) and Otsu's (between-class variance) thresholding functions using MBF algorithm. The superiority of the proposed algorithm is demonstrated by considering fourteen benchmark images and compared with other existing approaches namely bacterial foraging (BF) algorithm, particle swarm optimization algorithm (PSO) and genetic algorithm (GA). The findings affirmed the robustness, fast convergence and proficiency of the proposed MBF over other existing techniques. Experimental results show that the Otsu based optimization method converges quickly as compared with Kapur's method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 24, Issue 4, June 2011, Pages 595–615
نویسندگان
, ,