کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
381705 1437494 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors
چکیده انگلیسی

The high-performance application of high-power permanent magnet synchronous motors (PMSM) is increasing. PMSM models with accurate parameters are significant for precise control system designs. Acquisition of these parameters during motor operation is a challenging task due to the inherent nonlinearity of motor dynamics. This paper proposes an intelligent model parameter identification method using particle swarm optimization (PSO). PSO, an intelligent computational method based on stochastic search, is shown to be a versatile and efficient tool for this complicated engineering problem. Through both simulation and experiment, this paper verifies the effectiveness of the proposed method in identification of PMSM model parameters. Specifically, stator resistance and load torque disturbance are identified in this PMSM application. Though PMSM is presented, the method is generally applicable to other types of electrical motors, as well as other dynamic systems with nonlinear model structure.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 21, Issue 7, October 2008, Pages 1092–1100
نویسندگان
, , ,