کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382014 660722 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hyper-spectral image segmentation using Rényi entropy based multi-level thresholding aided with differential evolution
ترجمه فارسی عنوان
تقسیم بندی تصویر بیش از حد طیفی با استفاده از آستانه چند سطحی مبتنی بر آنتروپی Rényi کمک با تکامل دیفرانسیل
کلمات کلیدی
تکامل دیفرانسیل (DE)؛ تصویر طیف طیفی؛ تقسیم بندی تصویر چند سطح؛ آنتروپی Rényi؛ هسته چندگانه یادگیری؛ ماشین بردار پشتیبانی (SVM)
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Unsupervised classification of land cover study of hyper-spectral satellite images.
• A multi-level Rényi entropy based image thresholding scheme is presented.
• Multi-level thresholding is formulated as optimization problem and solved with DE.
• Composite kernel based classification approach using Support Vector Machine (SVM).
• Very competitive performance on popular hyper-spectral imagery like ROSIS and AVRIS.

This article presents a novel approach for unsupervised classification of land cover study of hyper-spectral satellite images to improve separation between objects and background by using multi-level thresholding based on the maximum Rényi entropy (MRE). Multi-level thresholding, which partitions a gray-level image into several distinct homogeneous regions, is a widely popular tool for segmentation. However, utility of multi-level thresholding is yet to be investigated in challenging applications like hyper-spectral image analysis. Differential Evolution (DE), a simple yet efficient evolutionary algorithm of current interest, is employed to improve the computation time and robustness of the proposed algorithm. The performance of DE is also investigated extensively through comparison with other well-known nature inspired global optimization techniques. In addition, the outcomes of the MRE-based thresholding are employed to train a Support Vector Machine (SVM) classifier via the composite kernel approach to improve the classification accuracy. The final outcomes are tested on popular hyper-spectral imagery like ROSIS and AVRIS sensors. The effectiveness of the proposed algorithm is evaluated through qualitative and quantitative comparison with other state-of-the-art global optimizers.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 50, 15 May 2016, Pages 120–129
نویسندگان
, , ,