کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382147 660739 2016 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-objective optimization of hybrid backorder inventory model
ترجمه فارسی عنوان
بهینه سازی چند هدفه مدل موجودی مجدد Hybrid Backorder
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• An intelligent hybrid backorder inventory system is developed with MOPSO.
• Pareto curves are generated between cost and service levels for the practitioners.
• Sensitivity of optimal parameters with respect to holding cost is studied.
• Applications of proposed expert and intelligent system in real world are discussed.

This paper addresses inventory problem for the products that are sold in monopolistic and captive markets experiencing hybrid backorder (i.e., fixed backorder and time-weighted backorder). The problem with stochastic demand is studied first by developing single objective (cost) inventory model. Computational results of a numerical problem show the effectiveness of hybrid backorder inventory model over fixed backorder inventory model. The model is later extended to multi-objective inventory model. Three objectives of multi-objective inventory model are the minimization of total cost, minimization of stockout units and minimization of the frequency of stockout. A multi-objective particle swarm optimization (MOPSO) algorithm is used to solve the inventory model and generate Pareto curves. The Pareto curves obtained for hybrid backorder inventory model are compared with the existing Pareto curves that are based on fixed backorder. The results show a substantial reduction in stockout units and frequency of stockout with a marginal rise in cost with proposed hybrid backorder inventory system in comparison to existing fixed backorder inventory system. Sensitivity analysis is done to study the robustness of total cost, order quantity, and safety stock factor with the change in holding cost. In the end, the performance of the MOPSO algorithm is compared with the multi-objective genetic algorithm (MOGA). The metrics that are used for the performance measurement of the algorithms are error ratio, spacing and maximum spread.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 51, 1 June 2016, Pages 76–84
نویسندگان
, ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت