کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
382529 | 660765 | 2014 | 9 صفحه PDF | دانلود رایگان |
• A new satisficing DEA model with credibility criterion is presented in this paper.
• The sensitivity analysis of the proposed model is conducted, and some useful results are obtained.
• A hybrid PSO algorithm is designed to solve the proposed DEA model.
• Some comparison study via numerical experiments are performed.
• The designed hybrid PSO algorithm outperforms the hybrid GA in terms of runtime and solution quality.
This paper presents a new satisficing data envelopment analysis (DEA) model with credibility criterion, in which the inputs and outputs are assumed to be characterized by fuzzy variables with known membership functions. When the inputs and outputs are mutually independent trapezoidal fuzzy variables, we turn the proposed satisficing DEA model into its deterministic equivalent programming problem. For general fuzzy input and output variables, we design a hybrid particle swarm optimization (PSO) algorithm by integrating approximation method, neural network (NN) and PSO algorithm to solve the proposed DEA model, in which the approximation method is used to compute the credibility functions, NN is used to approximate the credibility functions, and PSO is used to find the optimal solution of the proposed DEA problem. Furthermore, the sensitivity analysis of the proposed model is discussed. Finally, we perform a number of numerical experiments to demonstrate the effectiveness of the hybrid PSO algorithm. The computational results show that the designed hybrid PSO algorithm outperforms the hybrid genetic algorithm (GA) in terms of runtime and solution quality.
Journal: Expert Systems with Applications - Volume 41, Issue 4, Part 2, March 2014, Pages 2074–2082