کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
382961 660798 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Memetic search for the quadratic assignment problem
ترجمه فارسی عنوان
جستجوی معکوس برای مسئله تخصیص درجه دوم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We present a memetic algorithm (called BMA) for the well-known QAP.
• BMA integrates BLS within the population-based evolutionary computing framework.
• BMA is able to attain the best-known results for 133 out of 135 QAP benchmark instances.
• We provide insights on search landscapes and crossover operators for QAP.

The quadratic assignment problem (QAP) is one of the most studied NP-hard problems with various practical applications. In this work, we propose a powerful population-based memetic algorithm (called BMA) for QAP. BMA integrates an effective local optimization algorithm called Breakout Local Search (BLS) within the evolutionary computing framework which itself is based on a uniform crossover, a fitness-based pool updating strategy and an adaptive mutation procedure. Extensive computational studies on the set of 135 well-known benchmark instances from the QAPLIB revealed that the proposed algorithm is able to attain the best-known results for 133 instances and thus competes very favorably with the current most effective QAP approaches. A study of the search landscape and crossover operators is also proposed to shed light on the behavior of the algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 42, Issue 1, January 2015, Pages 584–595
نویسندگان
, ,