کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
382983 660799 2016 8 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient automated technique for CAD diagnosis using flexible analytic wavelet transform and entropy features extracted from HRV signals
ترجمه فارسی عنوان
یک روش خودکار کارآمد برای تشخیص CAD با استفاده از تبدیل موجک تحلیل انعطاف پذیر و ویژگی های آنتروپی استخراج شده از سیگنال HRV
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Classification of normal and CAD subjects is proposed using HRV signals.
• FAWT is used to decompose the HRV signal.
• K-NN entropy estimator and fuzzy entropy are used for feature extraction.
• Obtained classification accuracy of 100%.

Coronary Artery Disease (CAD) causes maximum death among all types of heart disorders. An early detection of CAD can save many human lives. Therefore, we have developed a new technique which is capable of detecting CAD using the Heart Rate Variability (HRV) signals. These HRV signals are decomposed to sub-band signals using Flexible Analytic Wavelet Transform (FAWT). Then, two nonlinear parameters namely; K-Nearest Neighbour (K-NN) entropy estimator and Fuzzy Entropy (FzEn) are extracted from the decomposed sub-band signals. Ranking methods namely Wilcoxon, entropy, Receiver Operating Characteristic (ROC) and Bhattacharya space algorithm are implemented to optimize the performance of the designed system. The proposed methodology has shown better performance using entropy ranking technique. The Least Squares-Support Vector Machine (LS-SVM) with Morlet wavelet and Radial Basis Function (RBF) kernels obtained the highest classification accuracy of 100% for the diagnosis of CAD. The developed novel algorithm can be used to design an expert system for the diagnosis of CAD automatically using Heart Rate (HR) signals. Our system can be used in hospitals, polyclinics and community screening to aid the cardiologists in their regular diagnosis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 63, 30 November 2016, Pages 165–172
نویسندگان
, , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت