کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
383181 660807 2016 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Ranking and significance of variable-length similarity-based time series motifs
ترجمه فارسی عنوان
رتبه بندی و اهمیت شباهت های متغیر بر اساس الگوهای سری زمانی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
سری زمانی؛ رتبه بندی موتیف؛ مدلسازی فاصله؛ توزیع بتا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Motifs of variable-length are becoming an important asset of current expert systems.
• We show that such motifs cannot be compared using length-normalized dissimilarities.
• We propose a solution to rank variable-length motifs and measure their significance.
• It relies on a compact dissimilarity space model based on the beta distribution.

The detection of very similar patterns in a time series, commonly called motifs, has received continuous and increasing attention from diverse scientific communities. In particular, recent approaches for discovering similar motifs of different lengths have been proposed. In this work, we show that such variable-length similarity-based motifs cannot be directly compared, and hence ranked, by their normalized dissimilarities. Specifically, we find that length-normalized motif dissimilarities still have intrinsic dependencies on the motif length, and that lowest dissimilarities are particularly affected by this dependency. Moreover, we find that such dependencies are generally non-linear and change with the considered data set and dissimilarity measure. Based on these findings, we propose a solution to rank (previously obtained) motifs of different lengths and measure their significance. This solution relies on a compact but accurate model of the dissimilarity space, using a beta distribution with three parameters that depend on the motif length in a non-linear way. We believe the incomparability of variable-length dissimilarities could have an impact beyond the field of time series, and that similar modeling strategies as the one used here could be of help in a more broad context and in diverse application scenarios.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 55, 15 August 2016, Pages 452–460
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت