کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
383832 | 660834 | 2010 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Car assembly line fault diagnosis based on modified support vector classifier machine
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is difficult to obtain accurately the solution to parameter b in the final decision-making function of support vector classifier (SVC) machine. By a proposed transformation, parameter b is considered into confidence interval of ν-SVC model. Then this paper proposes a new ν-support vector classifier machine (Nν-SVC). To seek the optimal parameter of Nν-SVC, particle swarm optimization (PSO) is proposed. The results of application in fault diagnosis of car assembly line show the hybrid diagnosis model based on Nν-SVC and PSO is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves this method is equivalent to standard ν-SVC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 9, September 2010, Pages 6352–6358
Journal: Expert Systems with Applications - Volume 37, Issue 9, September 2010, Pages 6352–6358
نویسندگان
Qi Wu,