کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384093 660840 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multi-level collaborative filtering method that improves recommendations
ترجمه فارسی عنوان
یک روش فیلترینگ همکاری چند سطحی که پیشنهادها را بهبود می بخشد
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We propose a recommendation method that improves collaborative filtering.
• We divide the Pearson Correlation Similarity (PCC) in multiple levels.
• The proposed method has been tested on five real datasets.
• A comparison to alternative methods is provided in order to show its effectiveness.

Collaborative filtering is one of the most used approaches for providing recommendations in various online environments. Even though collaborative recommendation methods have been widely utilized due to their simplicity and ease of use, accuracy is still an issue. In this paper we propose a multi-level recommendation method with its main purpose being to assist users in decision making by providing recommendations of better quality. The proposed method can be applied in different online domains that use collaborative recommender systems, thus improving the overall user experience. The efficiency of the proposed method is shown by providing an extensive experimental evaluation using five real datasets and with comparisons to alternatives.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 48, 15 April 2016, Pages 100–110
نویسندگان
, ,