کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384256 660843 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting container throughputs at ports using genetic programming
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Forecasting container throughputs at ports using genetic programming
چکیده انگلیسی

To accurately forecast container throughput is crucial to the success of any port operation policy. This study attempts to create an optimal predictive model of volumes of container throughput at ports by using genetic programming (GP), decomposition approach (X-11), and seasonal auto regression integrated moving average (SARIMA). Twenty-nine years of historical data from Taiwan’s major ports were collected to establish and validate a forecasting model. The Mean Absolute Percent Error levels between forecast and actual data were within 4% for all three approaches. The GP model predictions were about 32–36% better than those of X-11 and SARIMA. These results suggest that GP is the optimal method for this case. GP predicted that container throughputs at Taiwan’s major ports would slowly increase in the year 2008. Since Taiwan’s government opened direct transportation with China in July 2008, the issue of container throughput in Taiwan has become even more worthy of discussion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 3, 15 March 2010, Pages 2054–2058
نویسندگان
, ,