کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
384445 660847 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new automatic target recognition system based on wavelet extreme learning machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A new automatic target recognition system based on wavelet extreme learning machine
چکیده انگلیسی

In this paper, an automatic system is presented for target recognition using target echo signals of High Resolution Range (HRR) radars. This paper especially deals with combination of the feature extraction and classification from measured real target echo signal waveforms by using X-band pulse radar. The past studies in the field of radar target recognition have shown that the learning speed of feedforward neural networks is in general much slower than required and it has been a major disadvantage. There are two key reasons forth is status of feedforward neural networks: (1) the slow gradient-based learning algorithms are extensively used to train neural networks, and (2) all the parameters of the networks are tuned iteratively by using such learning algorithms (Feng et al., 2009, Huang and Siew, 2004, Huang and Chen, 2007, Huang and Chen, 2008, Huang et al., 2006, Huang et al., 2010, Huang et al., 2004, Huang et al., 2005, Huang et al., 2012, Huang et al., 2008, Huang and Siew, 2005, Huang et al., 2011, Huang et al., 2006, Huang et al., 2006a, Huang et al., 2006b, Lan et al., 2009, Li et al., 2005, Liang et al., 2006, Liang et al., 2006, Rong et al., 2009, Wang and Huang, 2005, Wang et al., 2011, Yeu et al., 2006, Zhang et al., 2007 and Zhu et al., 2005). To resolve these disadvantages of feedforward neural networks for automatic target recognition area in this paper suggested a new learning algorithm called extreme learning machine (ELM) for single-hidden layer feedforward neural networks (SLFNs) (Feng et al., 2009, Huang and Siew, 2004, Huang and Chen, 2007, Huang and Chen, 2008, Huang et al., 2006, Huang et al., 2010, Huang et al., 2004, Huang et al., 2005, Huang et al., 2012, Huang et al., 2008, Huang and Siew, 2005, Huang et al., 2011, Huang et al., 2006, Huang et al., 2006a, Huang et al., 2006b, Lan et al., 2009, Li et al., 2005, Liang et al., 2006, Liang et al., 2006, Rong et al., 2009, Wang and Huang, 2005, Wang et al., 2011, Yeu et al., 2006, Zhang et al., 2007 and Zhu et al., 2005) which randomly choose hidden nodes and analytically determines the output weights of SLFNs. In theory, this algorithm tends to provide good generalization performance at extremely fast learning speed. Moreover, the Discrete Wavelet Transform (DWT) and wavelet entropy is used for adaptive feature extraction in the time-frequency domain in feature extraction stage to strengthen the premium features of the ELM in this study. The correct recognition performance of this new system is compared with feedforward neural networks. The experimental results show that the new algorithm can produce good generalization performance in most cases and can learn thousands of times faster than conventional popular learning algorithms for feedforward neural networks.


► We present an automatic system for target recognition using target echo signals.
► We suggest a new learning algorithm called extreme learning machine (ELM).
► We use the Discrete Wavelet Transform (DWT) and wavelet entropy.
► The performance of this new system is compared with feedforward neural networks.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 16, 15 November 2012, Pages 12340–12348
نویسندگان
, ,