کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385195 660863 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A simulation study using EFA and CFA programs based the impact of missing data on test dimensionality
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A simulation study using EFA and CFA programs based the impact of missing data on test dimensionality
چکیده انگلیسی

This study examines the impact of missing rates and data imputation methods on test dimensionality. We consider how missing rate levels (10%, 20%, 30%, and 50%) and the six missed data imputation methods (Listwise, Serial Mean, Linear Interpolation, Linear Trend, EM, and Regression) affect the structure of a test. A simulation study is conducted using the SPSS 15.0 EFA and CFA programs. The EFA results for the six methods are similar, and all results obtained two factors. The CFA results also fit the hypothesized two factor structure model for all six methods. However, we observed that the EM method fits the EFA results relatively well. When the percentage of missing data is less than 20%, the impact of the imputation methods on test dimensionality is not statistically significant. The Serial Mean and Linear Trend methods are suggested for use when the percentage of missing data is greater than 30%.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 39, Issue 4, March 2012, Pages 4026–4031
نویسندگان
, , ,