کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
385281 660864 2008 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genetic optimization of GRNN for pattern recognition without feature extraction
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Genetic optimization of GRNN for pattern recognition without feature extraction
چکیده انگلیسی

This paper describes an approach for pattern recognition using genetic algorithm and general regression neural network (GRNN). The designed system can be used for both 3D object recognition from 2D poses of the object and handwritten digit recognition applications. The system does not require any preprocessing and feature extraction stage before the recognition. In GRNN, placement of centers has significant effect on the performance of the network. The centers and widths of the hidden layer neuron basis functions are coded in a chromosome and these two critical parameters are determined by the optimization using genetic algorithms. Experimental results show that the optimized GRNN provides higher recognition ability compared with that of unoptimized GRNN.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 34, Issue 4, May 2008, Pages 2444–2448
نویسندگان
, ,