کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386304 660883 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Likelihood ratio based features for a trained biometric score fusion
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Likelihood ratio based features for a trained biometric score fusion
چکیده انگلیسی

In this work, we present a novel trained method for combining biometric matchers at the score level. The new method is based on a combination of machine learning classifiers trained using the match scores from different biometric approaches as features. The parameters of a finite Gaussian mixture model are used for modelling the genuine and impostor score densities during the fusion step.Several tests on different biometric verification systems (related to fingerprints, palms, fingers, hand geometry and faces) show that the new method outperforms other trained and non-trained approaches for combining biometric matchers.We have tested some different classifiers, support vector machines, AdaBoost of neural networks, and their random subspace versions, demonstrating that the choice for the proposed method is the Random Subspace of AdaBoost.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 38, Issue 1, January 2011, Pages 58–63
نویسندگان
, , ,