کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386741 660890 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reducing samples for accelerating multikernel semiparametric support vector regression
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Reducing samples for accelerating multikernel semiparametric support vector regression
چکیده انگلیسی

In this paper, the reducing samples strategy instead of classical νν-support vector regression (νν-SVR), viz. single kernel νν-SVR, is utilized to select training samples for admissible functions so as to curtail the computational complexity. The proposed multikernel learning algorithm, namely reducing samples based multikernel semiparametric support vector regression (RS-MSSVR), has an advantage over the single kernel support vector regression (classical εε-SVR) in regression accuracy. Meantime, in comparison with multikernel semiparametric support vector regression (MSSVR), the algorithm is also favorable for computational complexity with the comparable generalization performance. Finally, the efficacy and feasibility of RS-MSSVR are corroborated by experiments on the synthetic and real-world benchmark data sets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 6, June 2010, Pages 4519–4525
نویسندگان
, , ,