کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
386864 660892 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modelling and risk factor analysis of Salmonella Typhimurium DT104 and non-DT104 infections
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Modelling and risk factor analysis of Salmonella Typhimurium DT104 and non-DT104 infections
چکیده انگلیسی

A clear understanding of risk factors is very important to develop appropriate prevention and control strategies for infection caused by such pathogens as Salmonella (S.) Typhimurium. The objective of this study is to utilise intelligent models to identify significant risk factors for S. Typhimurium DT104 and non-DT104 illness in Canada, and compare findings to those obtained using traditional statistical methods. Previous studies have focused on analysing each risk factor separately using single variable analysis (SVA), or modelling multiple risk factors using statistical models, such as logistic regression (LR) models. In this paper, neural networks and statistical models are developed and compared to determine which method produces superior results. In general, simulation results show that the neural network yields more accurate prediction than the statistical models. The network size, number of training iterations, learning rate, and training sample size in the neural networks are discussed to improve the performance of systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 35, Issue 3, October 2008, Pages 956–966
نویسندگان
, , , , , , , ,