کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
387072 | 660896 | 2010 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TAIFEX and KOSPI 200 forecasting based on two-factors high-order fuzzy time series and particle swarm optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Since the fuzzy time series forecasting methods provide a powerful framework to cope with vague or ambiguous problems, they have been widely used in real applications. The forecasting accuracy of these methods usually, however, depend on their universe of discourse and the length of intervals. So, we present a new forecasting method using two-factors high-order fuzzy time series and particle swarm optimization (PSO) for increasing the forecasting accuracy. To show the effectiveness of the proposed method, we applied our method for the Taiwan futures exchange (TAIFEX) forecasting and the Korea composite price index (KOSPI) 200 forecasting. The results show better forecasting accuracy than previous methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 2, March 2010, Pages 959–967
Journal: Expert Systems with Applications - Volume 37, Issue 2, March 2010, Pages 959–967
نویسندگان
Jin-Il Park, Dae-Jong Lee, Chang-Kyu Song, Myung-Geun Chun,