کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387119 660896 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector machine based multiagent ensemble learning for credit risk evaluation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Support vector machine based multiagent ensemble learning for credit risk evaluation
چکیده انگلیسی

In this paper, a four-stage support vector machine (SVM) based multiagent ensemble learning approach is proposed for credit risk evaluation. In the first stage, the initial dataset is divided into two independent subsets: training subset (in-sample data) and testing subset (out-of-sample data) for training and verification purposes. In the second stage, different SVM learning paradigms with much dissimilarity are constructed as intelligent agents for credit risk evaluation. In the third stage, multiple individual SVM agents are trained using training subsets and the corresponding evaluation results are also obtained. In the final stage, all individual results produced by multiple SVM agents in the previous stage are aggregated into an ensemble result. In particular, the impact of the diversity of individual intelligent agents on the generalization performance of the SVM-based multiagent ensemble learning system is examined and analyzed. For illustration, one corporate credit card application approval dataset is used to verify the effectiveness of the SVM-based multiagent ensemble learning system.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 37, Issue 2, March 2010, Pages 1351–1360
نویسندگان
, , , ,