کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
387168 660897 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Improving forecasts of GARCH family models with the artificial neural networks: An application to the daily returns in Istanbul Stock Exchange
چکیده انگلیسی

In the study, we discussed the ARCH/GARCH family models and enhanced them with artificial neural networks to evaluate the volatility of daily returns for 23.10.1987–22.02.2008 period in Istanbul Stock Exchange. We proposed ANN-APGARCH model to increase the forecasting performance of APGARCH model. The ANN-extended versions of the obtained GARCH models improved forecast results. It is noteworthy that daily returns in the ISE show strong volatility clustering, asymmetry and nonlinearity characteristics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 36, Issue 4, May 2009, Pages 7355–7362
نویسندگان
, ,